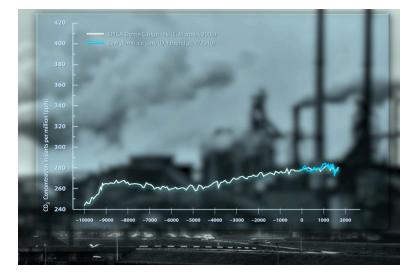


Effects of Free-Air Carbon Dioxide Enrichment (FACE) on Photosynthesis, Phenology and Yield of Winter Wheat

Oliver Knopf, Juan Romero, Antony Castro, ..., Einhard Kleist, Hendrik Poorter, Uwe Rascher, Onno Muller

7th International Plant Phenotyping Symposium

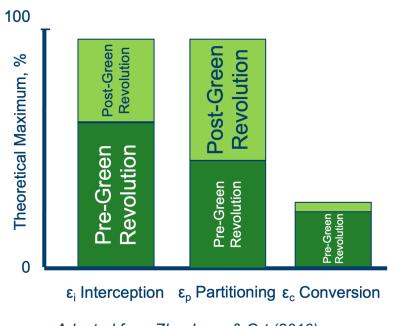

28th of September 2022

Why elevated CO₂?

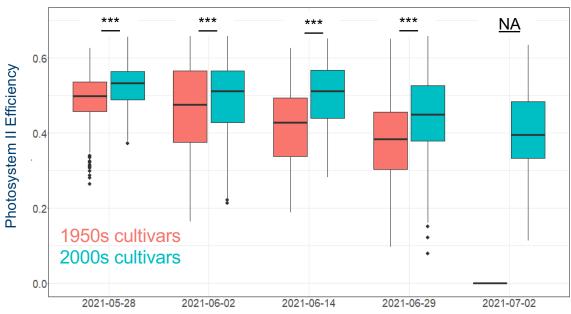
- By 2060: 600 ppm [CO₂] (RCP8.5), >10 billion people.
- The leaf & ear are the sites where plants transform light from the sun into substance.
- Until today this is the main food source for animals and humans.

 $6CO_2 + 12H_2O \Rightarrow C_6H_{12}O_6 + 6O_2 + 6H_2O$

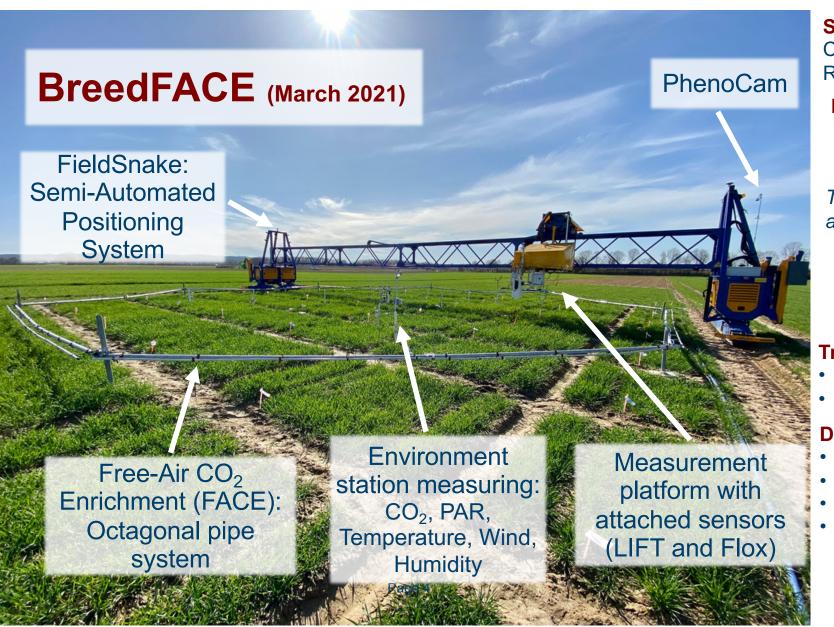
Helmholtz Climate Initative, https://ufz.pageflow.io/co2-budget


How are typical **breeding traits** of winter wheat genotypes affected by [eCO₂]:

- 1. Biomass, Grain Yield and Plant Height
- 2. Photosynthetic Efficiency
- 3. Quality


Breeding progress measured in PSII Efficiency

- Increased Light interception efficiency contributes to improved Photosynthesis.
- Light conversion efficiency still offers large potential for crop improvement.


Adapted from Zhu, Long & Ort (2010).

Old vs. New Winter wheat (Briwecs panel)

Data from Marlene Prinz (Master thesis 2022)

Site:

Campus Klein-Altendorf, Rheinbach, Germany.

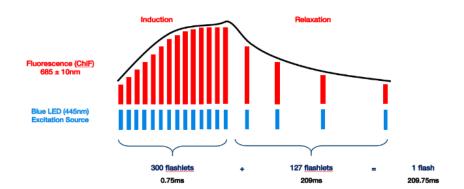
Measurement object:

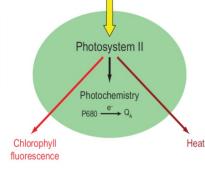
Triticum aestivium Apostel
Asory
Campesino
Foxx
Hyvega
Informer
KWS Emerick
LG Inital
Moschus
RGT Reform

Treatments:

- Control CO₂ [~400 ppm]
- Elevated CO₂ [~600 ppm]

Design:


- 3 replications
- 30 plots per ring
- Size: 2 x 3 m
- Core harvest 2 x 1.5 m


Light-Induced Fluorescence Transient (LIFT)

A field-based high-throughput system to monitor <u>chlorophyl</u>l <u>fluorescence (Chl F)</u> at the canopy level in natural environments.

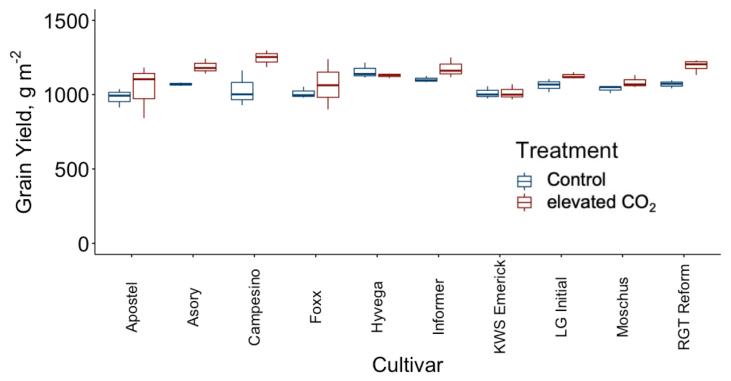
- Active and non-destructive measurement system with an excitation light source (blue LED 445 nm).
- High time resolution (< 1 s) assessment of photosynthetic performance at a distance.
- 420 flashlets per measurement => Transient

Source: Nicolas Zendonadi

Baker 2008, Chlorophyll Fluorescence: A Probe of Photosynthesis In Vivo

LIFT-REM Fluorometer (Soliense Inc., USA).

Flashlet Number


$$\frac{Fq'}{Fm'} = \frac{Fm' - F'}{Fm'}$$

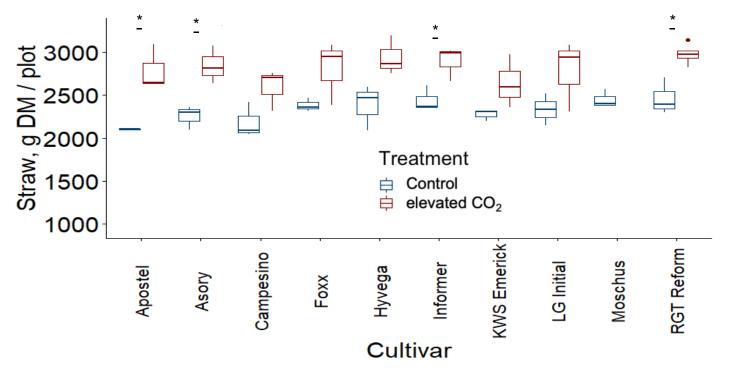
PSII operating efficiency

Grain Yield 2021

• CO₂ effect: Overall grain yield increase +7% **(p < .01)

Grain Yield

The figure shows the yield (g m⁻²) of 10 different winter wheat cultivars (*Triticum aestivum*) treated with elevated [CO₂] (\sim 600 ppm) and control which was grown at ambient [CO₂] (\sim 400 ppm) in 2021. Plants were grown in the BreedFACE experimental field at Campus Klein-Altendorf, Rheinbach, Germany (n = 3).

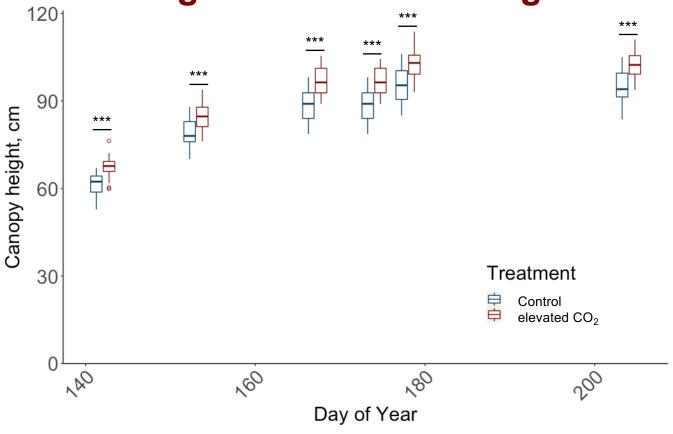

Core harvest 12th of August 2021

Cultivar	∆ Yield
Campesino	20.8%
RGT Reform	11.4%
→ Asory	11.0%
Informer	6.7%
Apostel	6.2%
LG Initial	6.0%
Foxx	5.7%
→ Moschus	4.4%
KWS Emerick	0.2%
Hyvega	-2.5%

Straw Yield 2021

• CO₂ effect: Overall increase in straw biomass +21.6% ***(p < .001)

Core harvest 12th of August 2021

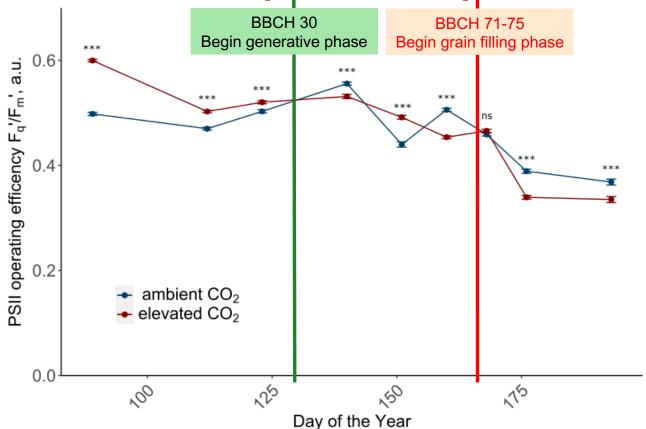

Cultivar	Δ Yield
Apostel	32.9%
Asory	26.3%
Hyvega	23.4%
RGT Reform	20.8%
LG Initial	19.2%
Campesino	18.8%
Informer	18.4%
Foxx	17.9%
KWS Emerick	16.3%
Moschus	NA

Straw Yield

The figure shows the average straw yield (g dry matter / plot) of winter wheat (*Triticum aestivum*) grown under elevated [CO₂] (~600 ppm) and control conditions at ambient [CO₂] (~400 ppm) in 2021. Plants were grown in the BreedFACE experimental field at Campus Klein-Altendorf, Rheinbach, Germany. Cultivar independent comparison of average height, error on mean, Welch Two Sample t-test, not significant = ns, p < 0.05 *, p < 0.01 ***, p < 0.001 *** (n = 3).

Plant Height over the Growing Season

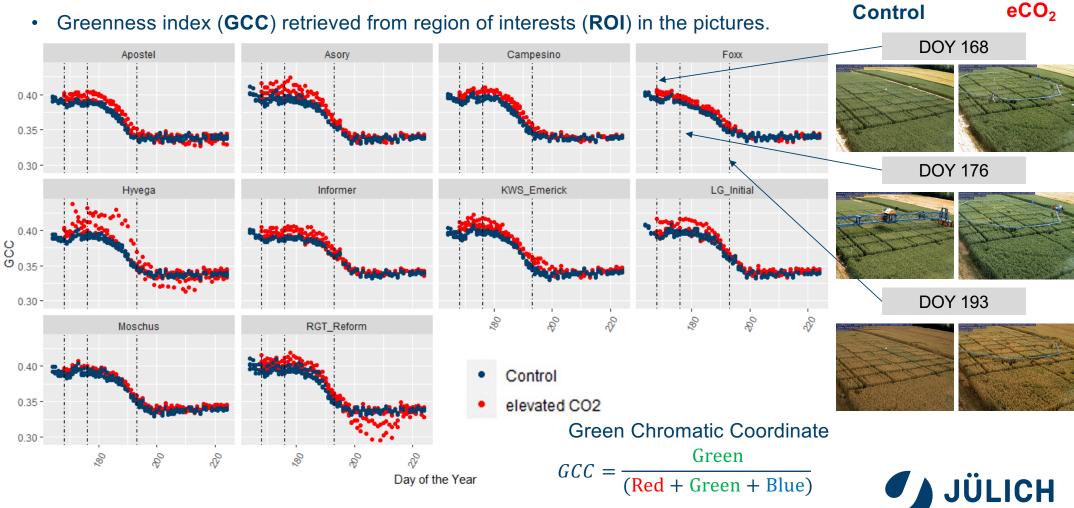
Plants grown under elevated CO₂ were **significantly taller** (7.3 cm) than plants grown under control conditions.


Cultivar	∆ Height
Campesino	13.2%
Hyvega	10.2%
→ Asory	9.9%
Foxx	9.8%
RGT_Reform	9.8%
Apostel	9.7%
LG_Initial	7.3%
Moschus	6.2%
KWS_Emerick	5.9%
Informer	4.6%

Canopy Height

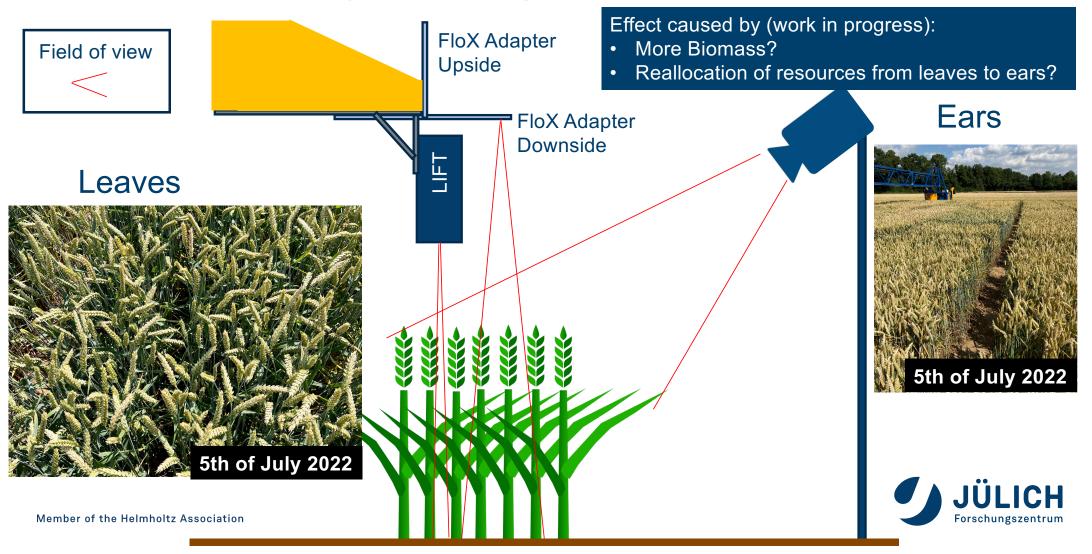
The figure shows the average plant height (cm) of winter wheat (*Triticum aestivum*) grown under elevated [CO₂] (~600 ppm) and control conditions at ambient [CO₂] (~400 ppm) in 2021. Plants were grown in the BreedFACE experimental field at Campus Klein-Altendorf, Rheinbach, Germany. Cultivar independent comparison of average height, error on mean, Welch Two Sample t-test, not significant = ns, p < 0.05*, p < 0.01***, p < 0.001*** (n = 9).

Seasonal development of Fq[′]/Fm[′]

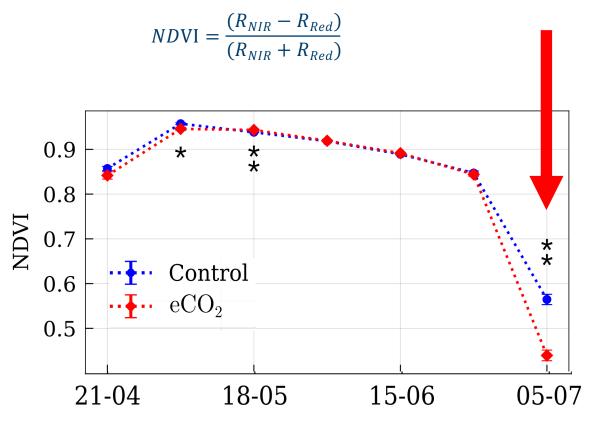

- Fq'/Fm' of winter wheat
 was significantly higher
 under eCO₂ during the
 vegetative growth period.
- During generative growth
 Fq'/Fm' is varying for
 different cultivars.
- During senescence
 Fq'/Fm' was significantly
 decreased under eCO₂

PSII Operating Efficiency in response to CO₂

The figure shows the mean quantum efficiency of PSII under elevated CO_2 measured with a LIFT-REM device for 10 different winter wheat cultivars (*Triticum aestivum*) treated with elevated $[CO_2]$ (~600 ppm) and control which was grown at ambient $[CO_2]$ (~400 ppm) in 2021. Plants were grown in the BreedFACE experimental field at Campus Klein-Altendorf, Rheinbach, Germany. Cultivar Independent comparison, error bars indicate the SE, Bonferroni adjusted t-test, not significant = ns, p < 0.001 *** (n = 3, total number of measurements = 8'901).



Greenness tracked with PhenoCams


Member of the Helmholtz Association

What are we actually observing with our sensors?

Passive Chl F measurements - FloX

NDVI = Normalized Difference Vegetation Index

Preliminary Data analysis of 2022

TechSpecs: FloX (2x spectrometers)

FULL Module: Reflectance and VIs

- 400 800 nm range
- Spec. Res. 0.65 nm
- SNR ~ 250

FLUO Module: SIF at O2-A and O2-B lines

- 650 800 nm range
- Spec. Res. 0.17 nm
- SNR ~ 1000

Summary

- Most cultivars show significant increases in
 - Straw Biomass,
 - Grain Yield and
 - Plant Height under elevated CO₂ (Ainsworth et al. 2021, Poorter et al., 2022).

- > PhenoCams are able track phenological changes in crops (Liu et al. 2018) but, the perspective matters!
- ➤ Chlorophyll Fluorescence (Chl F) retrieved parameters (Fq'/Fm') and vegetation indices indicate an earlier onset of senescence for cultivars grown under elevated CO₂.

Outlook

- Diurnal measurements
- Analysis of Sun-Induced Fluorescence measurements and include environmental factors.
- Combine with quality traits, e.g. protein content, baking characteristics.

Thanks to...

Onno Muller, Uwe Rascher, Hendrik Poorter, Ulrich Schurr, Einhard Kleist, Sandra Markwitz, Angelina Steier, Michael Quarten, Nils Müller, Lars Zinken, David Lenzen, Patrick Hostnik, CKA staff, KIT and LfL Team.

The BigBaking Project

... and for your attention.

